Key Exam Topics in This Lesson

Basic Statistics
- Basic Sample Population Statistics
- Skew and Kurtosis
- Normal Distribution (a.k.a. Elliptical or Gaussian)
- Typical Risk Distribution
- Types of Correlation Measures
- BA II Plus Calculator Practice!
Basic Sample Population Statistics

For a univariate sample of T observations:

Sample Mean $= \bar{X} = \frac{1}{T} \sum_{t=1}^{T} X_t$

Median $= 50$th percentile

Mode $= \text{the most common observation}$

Sample Variance $= s^2 = \frac{1}{T-1} \sum_{t=1}^{T} (X_t - \bar{X})^2$

Range $= \max X_t - \min X_t$

For a 2-variable sample (correlation and covariance):

$$r_{X,Y} = \frac{s_{X,Y}}{s_X s_Y}$$
$$s_{X,Y} = \frac{1}{T-1} \sum_{t=1}^{T} (X_t - \bar{X}) (Y_t - \bar{Y})$$

Skew and Kurtosis

Skew $= \text{third central moment, normalized}$

$$\omega = \frac{1}{T} \left(\frac{\sum_{t=1}^{T} (X_t - \mu)^3}{\sigma^3} \right) \quad \text{(Population)}$$

$$w = \left(\frac{T}{(T-1)(T-2)} \right) \left(\frac{\sum_{t=1}^{T} (X_t - \bar{X})^3}{s^3} \right) \quad \text{(Sample)}$$

Kurtosis $= \text{fourth central moment, normalized against Gaussian distribution}$

$$\kappa = \frac{1}{T} \sum_{t=1}^{T} \frac{(X_t - \mu)^4}{\sigma^4} - 3 \quad \text{(Population)}$$

$$k = \left(\frac{T(T+1)}{(T-1)(T-2)(T-3)} \right) \left(\frac{\sum_{t=1}^{T} (X_t - \bar{X})^4}{s^4} \right) - \frac{3(T-1)^2}{(T-2)(T-3)} \quad \text{(Sample)}$$
Normal Distribution (a.k.a. Elliptical or Gaussian)

- Mean = mode = median
- Skew = 0
- Kurtosis = 3 ("mesokurtic")

Typical Risk Distribution

- Skew < 0: long left tail ⇒ many more worse-than-expected results
- Kurtosis > 3 ("leptokurtic"): fatter tails ⇒ higher probability of extreme results
Types of Correlation Measures

1. **Pearson’s rho** – a.k.a. linear correlation

\[
\rho = \frac{\sigma_{X,Y}}{\sigma_X \sigma_Y} \quad r_{X,Y} = \frac{S_{X,Y}}{s_X s_Y}
\]

2. **Spearman correlation** = Pearson linear correlation of the observations’ ranks

\[
\rho_s = \rho [\text{Ranks of } X, \text{Ranks of } Y]
\]

3. **Kendall’s tau** – measures the observations’ tendency to move together

\[
\tau = \frac{\text{Concordant Pairs} - \text{Discordant Pairs}}{\text{Total Possible Pairs}}
\]

4. **Tail correlation** – correlation of tail values only

BA II Plus Calculator Practice!

Suppose we have 5 observations of \(X \) and \(Y \)

<table>
<thead>
<tr>
<th>(t)</th>
<th>(X_t)</th>
<th>(Y_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>95</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>45</td>
<td>30</td>
</tr>
</tbody>
</table>

Calculate the following statistics using your BA II Plus calculator:

1. Sample mean of \(X \) and \(Y \)
2. Sample standard deviation of \(X \) and \(Y \)
3. Covariance of \(X \) and \(Y \)
4. Linear correlation of \(X \) and \(Y \)
No peeking!

BA II Plus Calculator Practice!

See video for a walk through of the BA II Plus’s statistical functions!

<table>
<thead>
<tr>
<th>t</th>
<th>X_t</th>
<th>Y_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>95</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>45</td>
<td>30</td>
</tr>
</tbody>
</table>

Sample mean $\bar{X} = 40.00$ $\bar{Y} = 20.00$

Sample standard deviation $s_X = 33.91$ $s_Y = 7.91$

Pearson’s correlation coefficient $r_{X,Y} = \frac{\sum(X_t - \bar{X})(Y_t - \bar{Y})}{s_X s_Y} = \frac{150}{33.91 \times 7.91} = 55.92\% = \text{Pearson’s rho}$